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Internal Forces in Beams

Forces Associatedwith Normal Stresses:

Normal (or axial) force N
Bending moment (plane yz] M,

Bending moment (plane xz) My

Shearing force Vy

Shearing force Vy

Twisting moment (plane xy) Mg










Simple Formula for Normal Stresses

Due to Pure (or Transverse) Bending

GC= mlx y

* Plane of loads (and of bending) is perpendicular
to neutral axis

* X axis is the neutral axis and is a principal
centroidal axis

S,=|ydA=0, 1,=| xydA=0
JA JA




Simple Formula for Normal Stresses

Due to Pure (or Transverse) Bending

Internal Forces at the Cross Section

» Normal force N

* Bending moments My and My about the x
and y axes

Kinematic Relations




Simple Formula for Normal Stresses

Due to Pure (or Transverse) Bending

Kinematic Relations

* Plane cross section before deformation is assumed
to remain plane after deformation

* Both the displacement w in the axial direction and
the strain € are linear functions of x and y

a 4
a=%"=|1 X y\{b} ‘

C

a, b, c are independent of x and y

Simple Formula for Normal Stresses
Due to Pure (or Transverse) Bending

Static Relations
 Sum of internal stresses in the axial direction

" GdA=N

A

&

« Sum of moments of internal stresses about
y axis

oxdA=M,

JA

« Sum of moments of internal stresses about
X axis

=

'oydA=Mx
JA




Unsymmetric Bending of

Straight Beams

* \When the plane of bending is not a principal plane,
then

* Either use a more general formula for
the normal stresses (resulting from

a bending moment M,..), or

» Decompose the bending moment into
components whose vector representations
are along principal

centroidal axes




Case of Combined Normal Force
and Bending Moments

Constitutive Relations
* For linearly elastic material - uniaxial stress state

c=E¢g

=E|1xy]{§}

* From the static relations

A
=

A 8,8, |ia N
E| 8y Iy by {b}= My [
Sx Ixy Ix £ Mx

Case of Combined Normal Force
and Bending Moments

* From the static relations

A S, S| a N
El 8y I 1y {b}= My ]
Sx Ixy lx - Mx
where
Al (1 Y | [V
S, | = {y}dA, ly } = x? ) dA
Sy oA x Ixy JA xy




Case of Combined Normal Force
and Bending Moments

where
A " (1 Iy y?
Sy } = {y}dA, ly } = x? )} dA
S R | Xy

|
|

Case of Combined Normal Force
and Bending Moments

* The general formula for normal stresses in
terms of the normal force and bending moments:

o=|1

X y|

A

Sy
S

X

S, S,
IY IXY
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Case of Combined Normal Force
and Bending Moments

Simplifications
* If x and y are centroidal axes, then
Sx = Sy =0

& O @ I N\
c=[1 x y|| 0 |
0

X

y I’W mY{ :I

* If x and y are centroidal principal axes,
then Sx = 5y= 0, lxy': 0

[ |

Case of Combined Normal Force
and Bending Moments

* If x and y are centroidal principal axes,
then Sx = Sy= 0, 'xy =0

i\
A3 ®
=1 x y||-= |1 « [{ M,
AL
lx




Case of Combined Normal Force

and Bending Moments

M M
- N y X
e gE_ %X+ — ¥

= Neutral Axis
Is the axis at which the normal stress ¢ =0

Case of Combined Normal Force
and Bending Moments

* Assumption of plane cross section
before deformation remains plane
- Is accurate for:

- axial load (away from point of
application of load)
- pure bending P

1] §
.

- Is approximate for transverse bending

* Assumption of undeformable cross
sections

ex = ey 1y =0 | R

Line remains

- Only approximate for bending s e s O

deformed




Line becomes
curved
Line remains
straight, yet rotates

deformed




Case of Combined Normal Force
and Bending Moments

* Assumption of undeformable cross
sections

Ex =&y =Ygy =0
- Only approximate for bending

(ex,ey,yxy)<<ez

- More approximate than for beams
under axial loading -

Ex = &yT T V&, i N

deformed

Rotation, Curvature and Axial Strain
* For the case of a single bending moment Mx

- dz . sdz Ya [
do= g2 =<2 f

or




* Analogously, for a bending moment M,

2
E:‘—Xd—l'zl
dz

* And, for an axial force N (¢ =€,

* For the case of combined axial force,
bending moment M, and bending
moment My

e=[1xy|{ -= =




Calculations of Displacements

Displacement equations
from which

Simplifications
* If x and y are centroidal axes, and N is absent, then

dz2 | _—1|ly |y My
d%v E Ixy Ix M,
dz?




Calculations of Displacements

Simplifications
* If x and y are centroidal axes, and N is absent, then

d’u r
. dz2 | _ 1 |ly M,
d2v [ E |ly I | M,
dz? |

* If x and y are centroidal principal axes,
and N is absent, then

d%u 2y
dz? =i< ly
dv [ E | M,
dz? L Ix

y; v




Calculations of Displacements

Case of Transverse Bending

* Governing equation for the elementary theory of

beams: Y,V
Emax
2 2 - 8
d dv i -—J
— E I — s p Normal strain varlation

2 )( 2 y ] (profile view)

dz dz
- For uniform beams I "":-'} “ﬁ_h L

Bending stress variation
{protile view)

Calculations of Displacements

Case of Transverse Bending

:I - For uniform beams

Y. v
4 Emax
- C
LA i
4 p Normal strain varlation
dz (profile view)

Y.V

ﬁmam—_\

where subscripts x and y have . .
been dropped for convenience. /|74 ¥ L

"

Bandlng stress variation
(profile view)




Normal strain variation Bending stress variation
(profile view) (profile view)

Calculations of Displacements

Case of Transverse Bending

* Successive integration of the differential
equation

Transverse shear

|— -f pdz + ¢y = V(]




Calculations of Displacements

Case of Transverse Bending

] Bending Moment

Eld—v= DAZAZ+CsZ+C
dz> 00 1 ;

Calculations of Displacements

Case of Transverse Bending
Slope

1Y - fffpdzdzdz

2
+ 5012 + G52 + Cs




Calculations of Displacements

Case of Transverse Bending

Transverse Displacement

El v=ffffpdz dz dz dz
v 0 © 0
1

3.1 2
+EC1Z +§sz +C3Z+C4

Calculations of Displacements

* Case of combined |N, M, , M,

G=|1xyIS




Calculations of Displacements

* Displacement equations

* If x,y are centroidal principal axes
dw _ N
dz EA

d2U My d2V _ Mx

dz> Ely dz> Ely

w is the displacement of the axis
of the beam in the z direction




